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1 INTRODUCTION 
 
Many structural materials are subjected to crack forming 
and propagation during their service life. These cracks in-
fluence the stress distribution in the component and can 
result in significant decrease of its strength. Because of 
the importance of safety and reliability, the crack prob-
lem has been of interest to a large number of researchers. 
Elastic stress field around a crack tip is usually written as 
a set of infinite series expansions as [1]: 
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RIASSUNTO: Dalla definizione classica dello stato di sollecitazione elastica in prossimità dell’apice di una 
cricca, il termine T costante nello sviluppo in serie del fattore di intensificazione degli sforzi esiste solo in 
presenza del modo I di carico. Tuttavia, recenti studi mostrano che il T-stress può esistere anche in condi-
zione di modo II, e modificare significativamente il campo di sforzi elastici presenti nell’intorno dell’apice 
della cricca. Questi effetti possono essere visualizzati e testati sperimentalmente col metodo della fotoelasti-
cità. In questo lavoro è proposto uno studio sull’influenza del T-stress in cricche sollecitate secondo il modo 
II e i suoi effetti sul campo di frange visibili sperimentalmente. I provini utilizzati sono dischi, chiamati Bra-
zilian disks, al cui interno sono contenute cricche centrali da analizzare: i risultati sperimentali indicano che 
questi tipi di provini contengono valori negativi di T-stress. I valori ottenuti sperimentalmente sono poi con-
frontati con i risultati di simulazioni numeriche. Per meglio interpretare le differenze tra valori sperimentali 
e numerici, sono inoltre state eseguite analisi FEM 3D: i risultati mostrano l’influenza della reale geometria 
del fronte sui valori dei fattori di intensificazione degli sforzi. 

ABSTRACT. According to the classical definition for in-plane modes of crack deformation, the constant 
stress term T exists only in the presence of mode I. However, recent studies show that this term can exist in 
mode II conditions as well, and significantly affect the elastic stress field around the crack tip. These effects 
can be visualized using the experimental method of photoelasticity. Based on the analytical studies, presence 
of the T-stress in mode II cracks transforms the isochromatic fringe patterns from symmetric closed loops to 
asymmetric and discontinuous shapes. In this paper, presence of the T-stress in mode II cracks and its effects 
on the fringe patterns is experimentally investigated. The test specimens are Brazilian disks containing very 
sharp central cracks: experimental results indicate that these specimens contain negative values of T-stress. 
Experimental values are then compared to numerical results. To better understand the differences between 
experimental and numerical values, a thee dimensional analysis is performed with the finite element method: 
results show the influence of the real geometry of the crack front on the stress intensity factors. 
 
KEYWORDS: sharp crack generation, curved crack tip, Brazilian disk specimen, T-stress, mode II loading. 
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front and enable to get an indication about the stress in-
tensity factors trend along a non-straight crack front. 
Crack curvature radius through the thickness is 10 mm, 
and the maximum extension of the crack is 2a=96 mm, 
indicated with a black thicker line in Fig. 9. The angle α 
between the direction of application of the compressive 
force (F=375N) and the crack line is 25.4°. This angle is 
chosen according to [4] in order to obtain pure mode II 
on the crack, considering the problem in 2D plane stress 
state. Displacements of the nodes in which the force is 
applied, are forced to be in line with the loading direc-
tion. 
Since the results in terms of KII are equivalent consider-
ing both the crack tips, only for one of them the mesh has 
been refined in the circumferential direction. In this way, 
it is possible to reduce the analysis run time, without 
loosing accuracy in the final result. 
The material of the disk in numerical model is the poly-
carbonate, with elastic modulus of E=2480MPa and Pois-
son’s ratio ν=0.38, according to [11]. Solid elements used 
for the modeling have a shape function of the second or-
der, with a midside node in each edge. This choice allows 
having more nodes despite a not excessively refined 
mesh. Moreover, the use of quadratic element is neces-
sary to use the quarter point technique [17, 18], that is to 
move the midside nodes next to the tip to ¼ of the edge 
length, which results in a better stress gradient in this area 
with singularity in the crack tip. Since good results are 
achievable with these elements even if the singularity is 
not well modeled on lines other than elements edges [19, 
20], no collapsed element is used. 
It should be mentioned that to get better results in J-
integral evaluation and consequently on stress intensity 
factors assessment, mesh directions should always be 
perpendicular to the crack front [21], avoiding distorted 
elements. However, the circular shape of the crack front 
causes a particular pattern for the mesh through the spe-
cimen thickness. As shown in Fig. 8, in the upper part 
form point A to B, the mesh is more regular and the ele-
ments of this region describe the radial directions per-

pendicular to the crack front. In the lower part, the arc 
geometry makes it impossible to draw a regular mesh, 
and the normal to the crack front is not coincident with 
the mesh direction. 
Numerical results are obtained starting from node 1 cor-
responding to point A to node 33 that is point C in Fig. 8. 
Convergence of J-integral and stress intensity results is 
obtained at the third contour. The trend of stress intensity 
factors can be graphically observed in Fig. 10 in function 
of the node distance from the surface. However, the stress 
intensity factor values obtained near to point C should not 
be taken into consideration, since elements present a high 
level of distortion producing low accuracy in the results. 
Values of the first three nodes are moreover invalid in the 
discussion, since the third contour integral cannot be cal-
culated and results are infected by the presence of the 
surface border. 

6 DISCUSSION 
 
The semi-natural cracks created with a mechanical shock 
after making brittle the polycarbonate in the liquid nitro-
gen, have a nonlinear curved tip through the thickness. 
When the specimen containing such a crack is subjected 
to mode II loading condition, the global deformation of 
the crack front is in-plane sliding in X-direction. Howev-
er, considering local coordinate systems n-t moving along 
the crack tip curve (see Fig. 11), the global displacement 
of the crack tip points will have two components. The 
normal component in n-direction leads to mode II; and 
the tangential component in t-direction implies that there 
is also mode III deformations in local view. 
In order to find the effect of specimen thickness on the 
numerical results, they can be compared with the pre-
vious results [4] obtained from 2D finite element model-
ing. For this aim, a new parameter KIIeq is defined as: 
 

2 2= +IIeq II IIIK K K  (8) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Stress intensity factors along the crack front in function of the depth. (-●- KI, -♦- KII, -▲- KIII, -x- KIIeq, __ KII-2DFEM 
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which presents the equivalent mode II stress intensity 
factor in X-direction of the global coordinate system. 
It can be noticed from Fig. 10 that KI is negligible with 
respect to KII and KIII for all the considered nodes. Also, 
KIII is initially less than KII. Increasing the curvature that 
is going toward points B and C, KIII values are increasing 
and finally becoming more than KII values. However, 
values of KIIeq remain about constant, except from surface 
nodes which are not valid as described before. The ob-
served difference between KIIeq and the result of 2D mod-
el [4] shows that the thickness of specimen affects the 
ideal plane stress conditions and leads to some errors in 
the photoelastic experiment results. 

7 CONCLUSION 
 
In this research, presence of the T–stress and its effects 
on the elastic stress field around a mode II crack tip were 
experimentally studied. Very sharp cracks were created 
in polycarbonate sheets by using a new method with dif-
ferent steps. The cracks obtained in this way are com-
pletely sharp, but the crack tip has a curved shape 
through the thickness of the specimen. Specimens were 
cut in the form of centrally cracked Brazilian disk speci-
mens. Photoelastic experiments were conducted on these 
specimens subjected to mode II loading conditions, to de-
termine from the isochromatic fringe patterns the crack 
parameters KI, KII, and T by using computer codes devel-
oped with the MATLAB software. Experimental results 
revealed that the specimens had negative T–stresses in 
mode II condition. 
The experimental results were consistent very well with 
numerical bidimensional predictions in that the T-stress 
significantly affects the symmetric shape of the fringe 
loops, and causes the loops to become asymmetric and 
discontinuous along the crack edges. 
However, there were some minor errors which could be 
related to the curved shape of the crack front through the 
specimen thickness. The effect of crack tip curvature on 
the crack parameters was also investigated by developing 
a 3D finite element model. The crack front was assumed 
to be in a circular arc form and, even if it is not com-

pletely correspondent to the real situations, aim of this 
model is to get an indication about the stress intensity 
factors trend along a non-straight crack front. 
The numerical results show that though the global defor-
mation of the crack is in-plane sliding (mode II), in local 
coordinates there are two shear components which are 
parallel and perpendicular to the crack front. That is, the 
crack tip points are subjected to a combination of mode II 
and mode III deformations. This local mixed mode condi-
tion can lead to some errors in the experimental results, 
which can be a source of difference of experimental re-
sults compared to the values of the finite element model. 
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